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Abstract

A hybrid approach to active control of bending vibrations in beams based on the advanced Timoshenko theory is

described in this paper. It combines elements of both wave and mode approaches to active control and is an attempt to

improve on the performance of these approaches individually. As is well known that the classical Euler–Bernoulli beam

model considers only the lateral inertia and the elastic forces caused by bending deflections, and the effects of rotary inertia

and shear distortion are neglected. As a result, the theory is not valid for higher frequencies, typically when the transverse

dimensions are not negligible with respect to the wavelength. In the proposed hybrid approach based on the advanced

Timoshenko model, wave control is first applied at one or more points in the structure. It is designed on the basis of the

local behavior of the structure and is intended to either absorb vibrational energy or add damping, especially at higher

frequencies. Then modal control is applied, being designed on the basis of the modified global equations of motion of the

structure-plus-wave-controller. Because the higher order modes are relatively well damped, hybrid control improves the

model accuracy and the robustness of the system and gives better broadband vibration attenuation performance.

Numerical results are presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to demands for mechanical structures to be lighter and faster, there has been increasing interests in
active vibration control in recent years. In this paper, a hybrid approach consisting of complementary wave-
and mode-based control is described. The design is based on the advanced Timoshenko theory.

Vibrations can be described in a number of ways, with the most common descriptions being in terms of modes
and in terms of wave motion. From modal standpoint, the response of a structure is the summation of the
modes of that structure [1]. The contribution from each mode depends on the global properties of the structure,
namely, the material, dimension, and boundary conditions. The vibrations of elastic structures such as strings,
beams, and plates can also be described in terms of waves propagating and attenuating in waveguides. Such
waves are reflected and transmitted when incident upon discontinuities [2–4]. Correspondingly there are two
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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main approaches to active vibration control in which the control is designed in terms of either modal or wave
behavior.

In modal active vibration control, the aim is to control the characteristics of the modes of vibration [5–7],
i.e., their damping factors, natural frequencies or mode shapes. Active wave control aims to control the
distribution of energy in the structure by either reducing the transmission of waves from one part of the
structure to another (i.e., isolating one part of the structure from another) or by absorbing the energy carried
by the waves (i.e., adding damping). Active wave vibration control is most often feedforward. In which the
disturbance is detected, and a control force applied somewhere downstream to produce a destructive signal to
cancel the incoming wave or to absorb the energy associated with it. Feedforward wave control has been
applied in controlling both single wave type [8–11] and multiple wave types [12–15] of structural waves. Wave
control can also be feedback [16–18].

Both modal and wave active control have advantages and disadvantages. The advantages of modal methods
include the generality of the approach and its global nature; the disadvantages include the modal uncertainties
at high frequencies, and observation and control spillover due to unavoidable modal truncation in real time
implementation. There is a trade-off between robustness and model accuracy with accurate modeling of the
structure being essential to successful control system design. Wave designs are based on the local properties of
the structure and are inherently much less sensitive to system properties and, therefore, more robust than
global models of structures, especially at higher frequencies. However, it does not consider global motion: the
global behavior can adversely affect the amount of control achieved.

A hybrid approach was developed for actively controlling bending vibrations in an Euler–Bernoulli beam in
[19,20] for improving the performance of modal and wave control approaches individually. However, at
higher frequencies (typically when the transverse dimensions are not negligible with respect to the wavelength),
the effects of rotary inertia and shear distortion, which are neglected in the Euler–Bernoulli beam model, must
be taken into account. Rayleigh [21] introduced the effect of rotatory inertia and Timoshenko [22,23] extended
it to include the effect of transverse shear deformation.

In this paper, a hybrid controller is designed to control bending vibrations in beams based on the advanced
Timoshenko theory. In the proposed hybrid approach, wave control is first designed and is targeted at higher
frequencies. Two control strategies are presented, one is to optimally absorb the vibrational energy, and the
other is to add optimal damping to the structure. Modal control is then designed for the lower modes of
the structure based on the modified equations of motion of the structure-plus-wave-controller. Because the
higher order modes are now well controlled, the hybrid control improves the model accuracy and the
robustness of the system, and hence gives better broadband vibration attenuation performance. Numerical
results are presented.
2. Hybrid active vibration control

In the absence of damping, the equations of motion of a Timoshenko beam are [2]

GAk
qcðx; tÞ

qx
�

q2yðx; tÞ
qx2

� �
þ rA

q2yðx; tÞ

qt2
¼ f ðx; tÞ, (1a)
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qx2
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qyðx; tÞ

qx
� cðx; tÞ

� �
� rI

q2cðx; tÞ
qt2

¼ 0, (1b)

where x is the position along the beam axis, t the time, y(x,t) the transverse deflection of the center line of the
beam, c(x,t) the slope due to bending, I the area moment of inertia of cross section, A the cross-sectional area,
and E, G and r are the Young’s modulus, shear modulus and mass density, respectively. f(x,t) is the externally
applied force. It can be seen that Eqs. (1a) and (1b) are coupled through the slope and the transverse deflection
of the structure.

The equations of motion corresponding to free vibrations can be written as [7]

LðWnÞ ¼ o2
nMðWnÞ, (2)
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where on are the natural frequencies and
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It was found that the operators L and M are self-adjoint for classical boundary conditions (that is, clamped,
free, and simply-supported boundaries) [24]. The self-adjointness of a system has an important implication,
that is, if a system is self-adjoint, then the eigenfunctions are orthogonal [7]. The orthogonal condition is as
follows [24]: Z L

0

WT
n MWm dx ¼

0 for m ¼ n;

A non-zero constant for man:

(
(3)

The responses can be expressed as a sum of an infinite number of modal components as

yðx; tÞ ¼
X1
n¼1

Y nðxÞqnðtÞ and cðx; tÞ ¼
X1
n¼1

CnðxÞqnðtÞ, (4)

where Yn(x) and Cn(x) are mode shapes and qn(t) (i ¼ 1,2,y,N) modal coordinates of the system. The
equations of motion of the forced vibrations can then be written in terms of the modal coordinates as

€qnðtÞ þ o2
nqnðtÞ ¼ f nðtÞ; f nðtÞ ¼

Z
f ðx; tÞY nðxÞdx; n ¼ 1; 2; . . . , (5)

where fn(t) is the nth modal force.
Assuming time harmonic motion, with time dependence suppressed, the solutions to Eq. (2) have been

found as [25]
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The nth mode dependant coefficients Cn
i (i ¼ 1,2,3,4) can be found with boundary conditions given. For

example, for a cantilever beam, the boundary conditions are
(1)
 At x ¼ 0 (clamped end)

yð0; tÞ ¼ 0 and cð0; tÞ ¼ 0; (7)
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At x ¼ L (free end)
(2)
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Eq. (7) gives
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Eq. (8) gives
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Eqs. (9) and (10) can be rewritten in matrix form:
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It can be seen that there exist infinite number sets of Cn
i (i ¼ 1,2,3,4) that satisfy Eq. (11). Deleting one row in

Eq. (11) allows the rest of the coefficients to be solved in terms of one chosen coefficient. For example, deleting
the first row and solving the coefficients in terms of Cn

1, one has
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Cn
1 is chosen in such a way that it allows the mode shape to be mass normalized, that is, to satisfyZ L

0

ðrAY mðxÞY nðxÞ þ rIcmðxÞcnðxÞÞdx ¼ dmn; m; n ¼ 1; 2; 3; . . . , (13)

where dmn is the Dirac delta function.
The control design is described as follows. It shall be pointed out that in principle, there is no restriction on

which wave and modal control design approaches are used. In this paper, however, the particular case
considered is that of collocated, point force/sensor feedback wave control combined with modal control
designed using pole placement.

2.1. Wave control

The collocated feedback control is applied at some point along a structural element as shown in Fig. 1. In
the frequency domain, the wave control force is written as

F ðoÞ ¼ �HyðoÞY ðoÞ. (14)

The control is dynamically identical to spring attachments with dynamic translational and rotational
stiffnesses KT and KR, which are normally frequency dependent and complex. This gives rise to reflected and
transmitted propagating waves as shown in Fig. 1. The amplitudes of these waves are given in terms of
reflection and transmission coefficients r and t, where

t ¼ Iþ mcþ Zd; r ¼ mc� Zd, (15)
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Fig. 1. Collocated feedback control.
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where I is the identity matrix and

c ¼
iN iN

P P

� �
; d ¼

�iP �N

iP N

� �
,

m ¼
KT GAk

2ð�Pk2 þNk1Þ þ ð�P� iNÞKT GAk
; Z ¼

KREI

2ð�Pk1 �Nk2Þ þ ð�N þ iPÞKREI
.

The controller can be designed in a number of ways as mentioned earlier. Two example design strategies
are presented, one is to add optimal damping to the structure, and the other is to optimally absorb the
vibrational energy.

When designed to add optimal damping to the structure, the controller in frequency domain is in the
form of

HyðoÞ ¼ ioCðoÞ. (16a)

The objective of the control is to absorb as much of the incident energy as possible through adding optimal
damping. The optimal control gain is found by assuming a wave incident on one side of the control location
and then by designing the control gain C(o) so as to maximize the absorbed incoming energy, in other words,

to minimize the power reflected and transmitted per unit incident power jrj2 þ jtj2. The optimal control gain is
obtained through self-written scripts using Matlab Symbolic Math Toolbox, and it is found as

CðoÞ ¼ 2GAkð�k1N þ k2PÞ=ðo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þN2

p
Þ.

When designed to optimally absorb vibration energy, in frequency domain, the controller is in the form of

HyðoÞ ¼ C1ðoÞ þ ioC2ðoÞ. (16b)

Following a similar procedure as described above, the optimal energy absorbing control gains are found to be
C1ðoÞ ¼ 2GAkPðk1N � k2PÞ=ðP

2 þN2Þ and C2ðoÞ ¼ 2GAkNðk1N � k2PÞ=ðoðP2 þN2ÞÞ.
In both cases, the design criteria used is to minimize the reflected and transmitted vibrational energy, by

assuming a single propagating wave is incident on the control location and neglecting near-field waves.
The optimal controllers of Eqs. (16a) and (16b) are non-causal. Hence, a causal controller that

approximates the ideal controller must be found for real time implementation. A causal controller can be
obtained using a digital FIR (finite impulse response) controller through truncating the non-causal part of the
controller; it can also be obtained by tuning the optimal controller to be optimum at some targeted frequency.
Both approaches are illustrated in details in the next section.
2.2. Modal control

Modal control is now implemented by wrapping state-space control around the wave controlled structure.
In general, an approximation for the wave control is required. Two approximation approaches are used in this
paper, one is to use FIR filter, and the other is to tune to controller to be optimal at a certain frequency.
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2.2.1. FIR approximation to optimal damping wave controller

First, let us consider modal control design of the structure modified by the optimal damping wave
controller. In this case, a causal controller is obtained using a digital FIR controller through truncating the
non-causal part of the controller. To enable modal control design using the modified equation of motion, a
polynomial in o is used to approximate the controller ĤyðoÞ in the low frequency region, where modal control
is to be most effective. The real and imaginary parts are approximated over this frequency range using a
weighted least-squares procedure as

ĤyðoÞ ¼ Ĥreal þ Ĥ imaginary; Ĥreal ¼ aþ bo2; Ĥ imaginary ¼ co. (17a)

The polynomials are chosen to be second-order or lower so that the order of the system is not changed. For a
point wave control force at xc, and a controller defined by Eq. (17a), it follows that the wave control force is
approximated in this low frequency region by

f̂ cðx; tÞ ¼ �½awðx; tÞ � b €wðx; tÞ þ c _wðx; tÞ�dðx� xcÞ. (18a)

The modal forces become

f nðtÞ ¼

Z
f ðx; tÞY nðxÞdxþ

Z
f̂ cðx; tÞY nðxÞdx; n ¼ 1; 2; . . . . (19)

The equations of motion can be written in matrix form as

M€qþ C_qþ Kq ¼ f, (20)

where fðtÞ ¼ ½f 1ðtÞ f 2ðtÞ . . . f nðtÞ�
T and qðtÞ ¼ ½q1ðtÞ q2ðtÞ . . . qnðtÞ�

T are the external force and modal force
vectors, and M, C, and K are mass, damping and stiffness matrices given by

Mij ¼ dij � bfiðxcÞfjðxcÞ; Cij ¼ cfiðxcÞfjðxcÞ; Kij ¼ o2
i dij þ afiðxcÞfjðxcÞ, (21a)

It is noted that the wave control force f̂ cðx; tÞ now couples the uncontrolled modes. Furthermore, Eq. (20) is
normally non-self-adjoint, so that the new modes are complex.

The state vector XðtÞ ¼ ½qTðtÞ : _qTðtÞ�T is now introduced. The states involve the uncontrolled modal
coordinates of the undamped structure. Eq. (20) is then rewritten in state-space form as

_XðtÞ ¼ AXðtÞ þ BfðtÞ, (22)

where the coefficient matrices

A ¼
0 I

�M�1K �M�1C

� �
; B ¼

0

M�1

� �
. (23)

Pole placement approach is adopted for the modal control design [7].
2.2.2. Tuned approximation to optimal energy absorbing wave controller

In tuned wave control the aim is to tune the controller so that it is equal to the optimal controller at some
specific frequency od. The controller is then

HyðodÞ ¼ C1ðod Þ þ ioC2ðodÞ. (17b)

In the time domain, this corresponds to proportional plus derivative (PD) feedback control (i.e., a combined
spring–damper). This is of course a classical control methodology; the control gains, however, is calculated
from a wave perspective to be optimal at some desired tuned frequency od. For a point wave control force at
xc, and a controller defined by Eq. (17b), it follows that the wave control force is approximated in the low
frequency region by

f̂ cðx; tÞ ¼ �C1ðodÞwðx; tÞdðx� xcÞ � C2ðodÞ _wðx; tÞdðx� xcÞ. (18b)
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Table 1

The first six natural frequencies of the system.

Mode number 1 2 3 4 5 6

Frequency (Hz) 4.46 27.76 77.76 152.31 251.71 375.91

Table 2

The locations of the disturbance, the controllers, and the response point.

Disturbance Wave controller Modal controllers Response point

Location 0.1L 0.2L (1/6)L (5/12)L 0.7L
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The rest of the design follows the same procedures as described in Section 2.2.1, the only difference being the
coefficients of Eq. (20), which are now given as

M ¼ I; Cij ¼ C2ðodÞfiðxcÞfjðxcÞ; Cij ¼ o2
i dij þ C1ðodÞfiðxcÞfjðxcÞ. (21b)

3. Numerical example

In this section, some numerical results are presented for a cantilever beam. The physical properties of the
beam as well as the locations of excitation/control forces and sensors are chosen to be the same as that of [20].
The physical parameters are as follows: Young’s modulus E is 190GN/m2, shear modulus G 77.5GN/m2,
Poisson’s ratio n 0.29, mass density r 7800mg/m3, and the width b, thickness h, and length L of the beam being
0.04, 0.002, and 0.6m, respectively. Shear coefficient k is related to Poisson’s ratio n by k ¼ 10ð1þ nÞ=
ð12þ 11nÞ [26]. The lowest six natural frequencies are given in Table 1. A disturbance is applied at one point,
wave control is applied at a second point and modal control is applied at two further points as given in
Table 2. The positions of these points are chosen so as to avoid the nodes of the first six modes. Numerical
results show the response at a position x ¼ 0.7L per unit disturbance force. The controlled and uncontrolled
frequency responses are compared for the cases of wave control alone, modal control alone, and hybrid wave/
mode control. In the FIR approximated wave controller, the filter contains 20 terms. The choice of the FIR
filter length is a compromise between the accuracy of the controller and the calculation time for the control
output. In the tuned approximation of the wave controller, the controller is tuned to be optimal at its third
natural frequency.

Fig. 2(a) shows the frequency responses of the structure after application of the optimal damping wave
controller alone and Fig. 2(b) shows the frequency responses of the structure after application of the optimal
energy absorbing wave controller alone. Without control, clear, sharp resonances can be observed. The wave
controllers are seen to add damping to the structure, and the amount of damping varies from mode to mode.
They also change the natural frequencies somewhat.

Modal control can be designed to control any modes provided the knowledge of the responses of those
modes is adequate. Here the controller is designed to increase the damping factors of the first two modes of the
structure to 0.5 by using pole placement approach. Fig. 3 shows the frequency responses before and after
modal control. The lowest two modes are clearly well controlled, while the remainders are virtually unaffected.
Sharp resonances associated with the uncontrolled modes, therefore, still exist. Including more modes in the
control design can alleviate this problem, but only at the cost of increased model complexity.

Fig. 4(a) shows the frequency responses after the application of hybrid control with optimal damping wave
control; and Fig. 4(b) shows the frequency responses after the application of hybrid control with optimal
energy absorbing wave control. The hybrid controls clearly add substantial damping, giving improvement
over modal control alone. They also give broadband control due to the energy-absorbing nature of the wave
controllers, reducing the effects of higher resonances and spillover.
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Fig. 2. Frequency responses before (y) and after (___) wave control: (a) optimal damper; (b) optimal energy absorber.
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4. Concluding remarks

In this paper, a hybrid approach to active control of bending vibrations in beams based on the advanced
Timoshenko theory is described. In the proposed approach, local, low-authority wave feedback control,
designed on the basis of local wave propagation, is implemented first, the aim being to add optimal damping
to the structure in one example, and to optimally absorb vibration energy in the structure in the second
example. Since the wave controllers are generally non-causal, two strategies are presented in finding their
causal approximations. After the implementation of the wave control, the equation of motion of the system is
modified. Global, high-authority modal control is then designed, based on this modified equation, which aims
to control the lowest few modes of the system. The hybrid approach exhibits better broadband active vibration
control performance than the cases with either modal or wave control alone. There is a reduction in the order
of the models required without there being a significant increase in the system representation associated
uncertainty. Finally the effects of the unmodeled modes are reduced and the robustness is improved.

While the control design based on the classical Euler–Bernoulli model theory [20] is only applicable to slim
beams, the present design based on the advanced Timoshenko model is suitable for deep as well as slim beam
elements. Due to the coupling between transverse deflection and bending slope, the analysis and control design
based on the current model is more involved. The design is verified by comparing the control performance of a
slim beam to that obtained using the Euler–Bernoulli model, good agreement has been reached.
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